

ANALYSIS SEMINAR

Some new function spaces

by

Katsuo Matsuoka

Nihon University, Japan

ABSTRACT

Recently, we introduced some new function spaces, i.e. B_{σ} -function spaces denoted by $B_{\sigma}(E)(\mathbb{R}^n)$ and $\dot{B}_{\sigma}(E)(\mathbb{R}^n)$. These function spaces are defined as follows. For $\sigma \in [0, \infty)$, let $B_{\sigma}(E)(\mathbb{R}^n)$ and $\dot{B}_{\sigma}(E)(\mathbb{R}^n)$ be the sets of all functions f on \mathbb{R}^n such that $||f||_{B_{\sigma}(E)} < \infty$ and $||f||_{\dot{B}_{\sigma}(E)} < \infty$, respectively, where $||f||_{B_{\sigma}(E)} = \sup_{r\geq 1} 1/r^{\sigma} ||f||_{E(Q_r)}$ and $||f||_{\dot{B}_{\sigma}(E)} = \sup_{r>0} 1/r^{\sigma} ||f||_{E(Q_r)}$. Here, for each r > 0, $Q_r = \{y = (y_1, y_2, \cdots, y_n) \in \mathbb{R}^n : \max_{1 \leq i \leq n} |y_i| < r\}$ or $Q_r = \{y \in \mathbb{R}^n : |y| < r\}$, and $E(Q_r)$ is a function space on Q_r with semi norm $||\cdot||_{E(Q_r)}$. For example, $E = L^p$, Lip_{α}, BMO, etc.

If $E = L^p$ and $\sigma = n/p$, then $B_{\sigma}(L^p)(\mathbb{R}^n) = B^p(\mathbb{R}^n)$ which introduced by Beurling (1964) together with its predual $A^p(\mathbb{R}^n)$, so-called the Beurling algebra.

Using the B_{σ} -function spaces, we can unify a series of results on the boundedness of operators on several classical function spaces.

The talk is based on a joint work with Y. Komori-Furuya (Tokai U), E. Nakai (Ibaraki U) and Y. Sawano (Kyoto U).

Monday, January 30, 2012 at 3:00-4:00 pm

Davidson Lecture Hall, Claremont McKenna College For more information contact Asuman G. Aksoy at aaksoy@cmc.edu